
Advances in AerodynamicsZeng et al. Advances in Aerodynamics             (2022) 4:3 
https://doi.org/10.1186/s42774-021-00095-6

RESEARCH Open Access

Optimized sparse polynomial chaos
expansion with entropy regularization
Sijie Zeng1, Xiaojun Duan1, Jiangtao Chen2 and Liang Yan1*

*Correspondence:
yanliang@nudt.edu.cn
1College of Liberal Arts and
Sciences, National University of
Defense Technology, Changsha,
China
Full list of author information is
available at the end of the article

Abstract

Sparse Polynomial Chaos Expansion (PCE) is widely used in various engineering fields
to quantitatively analyse the influence of uncertainty, while alleviating the problem of
dimensionality curse. However, current sparse PCE techniques focus on choosing
features with the largest coefficients, which may ignore uncertainties propagated with
high order features. Hence, this paper proposes the idea of selecting polynomial chaos
basis based on information entropy, which aims to retain the advantages of existing
sparse techniques while considering entropy change as output uncertainty. A novel
entropy-based optimization method is proposed to update the state-of-the-art sparse
PCE models. This work further develops an entropy-based synthetic sparse model,
which has higher computational efficiency. Two benchmark functions and a
computational fluid dynamics (CFD) experiment are used to compare the accuracy and
efficiency between the proposed method and classical methods. The results show that
entropy-based methods can better capture the features of uncertainty propagation,
improving accuracy and reducing sparsity while avoiding over-fitting problems.

Keywords: Uncertainty quantification, Sparse polynomial chaos expansion, Entropy,
Regularization

1 Introduction
Due to the variety of uncertainties frequently involved in engineering applications, which
may cause fluctuations in the performance of a system, it is necessary to comprehensively
consider the impact of uncertain factors [1, 2]. To deal with the problem of limited exper-
iment resources, various surrogate models [3, 4] have been proposed, aiming to construct
a mathematical model that accurately mimics the behavior of the original problem with
an affordable experimental design [5]. Popular surrogate techniques include the Krig-
ing method [6–9], artificial neural network [10–12], polynomial chaos expansion (PCE)
method [13–16] etc. In this paper, we focus on the PCE model, which has been widely
used in engineering to quantify uncertainties efficiently.
The basic idea of PCE is to expand an exact solution of a stochastic process space

by polynomial expansion [17–19], and for the model generated by which can generally
be solved by ordinary least squares (OLS). Many successful applications of uncertainty
quantification based on the PCE method have been achieved [20–22]. However, the
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cost of constructing a PCE model increases exponentially with the dimension of input
parameters, i.e. the curse of dimensionality, thus severely restricts practical applica-
tions of the model at the industrial level [23–25]. In order to solve this problem, lots
of sparse algorithms have been developed in recent years. Some typical examples of
well-established methods are the sparse regression method [26, 27] and the compressive
sampling method [28, 29].
A problem with some OLS-solution methods is the possibility of over-fitting but can

be avoided by regularization, which is another practical solution to seek a sparse rep-
resentation [30]. Regularization is a typical model selection method that introduces
a regularizer to the empirical risk. From the perspective of Bayesian estimation, the
regularizer corresponds to the prior probability of the model [31].
There are many regularization methods, but it is �0 regularization that is required to

obtain a true sparse model. However, solving model with �0 regularization is an NP-Hard
problem [32, 33], so researchers usually adopt the �1 regularization when dealing with
sparse problems [34], which is an optimal convex approximation of the �0 paradigm, and
can be easily solved optimally to obtain a sparse model.
Although scholars have conducted a considerable amount of research on sparse poly-

nomial chaos expansions, most of the existing sparse methods are derived from the
perspective of regression [35]. In these methods, researchers usually pay attention to one
or two numerical characteristics in the distribution, which are important statistics tomea-
sure uncertainty. However, the distribution is very complicated in common situations,
especially when there is a noise in the original problem. Furthermore, the aforemen-
tioned methods focus on statistics, such as the relative mean squared error (MSE) or the
cross-validation error, to optimize parameters, which ignores the overall uncertainties
propagated from the input variables.
To depict the full uncertainty of the output, we introduce information entropy as

a measure of the evolution of the output distribution to further optimize the sparse
representation of a PCE model. Information entropy was first introduced to measure
microscopic uncertainty and multiplicity by Shannon [36]. The idea was then extended
to learning tasks to measure the information changes with different statistical models.
Jaynes [37] proposed the maximum entropy principle (MEP) to provide an optimization
criterion. B. Grechuk et al. [38] have studied the relationships among error, likelihood,
and entropy in regression analysis, and found that a normal distribution can be recovered
from the maximum entropy principle. Wang [39] introduced a maximum entropy penalty
to model and incorporate the entropy-controlled framework with other conventional
learning algorithms. Liang [40] proposed a sparse subspace clustering with entropy-norm
by using information entropy as the regularizer of the objective function. Researchers fur-
ther made variable selection through the evaluation of entropy, and extended the use of
entropy as an important criterion for model selection [41, 42], which can be embedded in
existing methods but does not form a framework.
In this work, we aim to use entropy to propagate uncertainty of input-output while

retaining the advantages of existing sparse PCE techniques. Hence, we propose a novel
method where entropy is an auxiliary penalty term. Firstly, a general re-optimization
model is proposed which chooses the features with the largest information entropy-based
on the existing optimized model. Although such a strategy is easy to implement, it may
ignore some key features in the first stage. A hybrid entropy-based synthetic method
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embedded in several commonly used classical sparse criteria is thus proposed. The novel
regularization structure takes the value and volatility of each feature into account simul-
taneously. The entropy term can be regarded as a trade-off between the predictive mean
value and uncertainty along with the selected features. The above two algorithms can
be easily computed with existing sparse algorithms, which improves their usage scope
and availability. Experiments are performed to compare the proposed two algorithms
and classical sparse methods, i.e. the Orthogonal Matching Pursuit (OMP), the Least
Angle Regression (LARS), the Subspace Pursuit (SP), and the Bayesian Compressive
Sensing (BCS). Results show that the general re-optimization method is of simple oper-
ation and universality because it can optimize any sparse PCE model, while the hybrid
entropy-based synthetic method has strong pertinence, and is superior to the former in
high-dimensional complex applications.
The remainder of the paper is organized as follows. Section 2 introduces the fundamen-

tal theory of sparse PCE models. Section 3 proposes the theories and algorithms of the
two optimizationmethodsmentioned in the previous paragraph. Section 4 shows the per-
formance of the proposed methods, illustrated by numerical examples and comparisons.
Finally, the conclusions are summarized in Section 5.

2 The fundamental theory
2.1 Sparse polynomial chaos expansion

The basics of PCE are elaborated briefly as follows. Let M be the original model and
Y = M(ξ) be the output. The finite-order PCE model expanded in the full polynomial
space can be expressed as:

Y ≈ YPC =
P−1∑

i=0
ci�i(ξ), (1)

where ξ is d-dimensional random variables with a probability density function (PDF) of
f (ξ), and �i(ξ) is a set of polynomial basis functions truncated at the p-th order with P
denoting the degree of the PCE. Generally, P varies with different truncation schemes.
For example, when the total degree space is chosen,

P = (p + d)!
p! d!

. (2)

with p as the maximum degree for each dimension. Given a design of experiment(DoE)
{ξ ,Y }, where ξ = (ξ1, ξ2, . . . , ξn) ∈ R

d×n is a specific sample and Y (ξ) ∈ R
n are corre-

sponding responses. The main effort of constructing a PCEmodel is solving the following
generalized linear equation system:

⎡

⎢⎢⎢⎢⎣

Y (ξ0)

Y (ξ1)
...

Y (ξn)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

�0(ξ0) �1(ξ0) · · · �P−1(ξ0)

�0(ξ1) �1(ξ1) · · · �P−1(ξ1)
...

...
. . .

...
�0(ξn) �1(ξn) · · · �P−1(ξn)

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

c0
c1
...

cP−1,

⎤

⎥⎥⎥⎥⎦
(3)

which can be rewritten in matrix form:

Y = �c. (4)

Although we are able to obtain a least squares estimate ĉ = (
�T�

)−1
�TY easily, the

degree P increases dramatically with p and d, hence we have to solve an underdetermined
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system with limited DoE resources, and the least squares solution can be inaccurate
and unstable. The sparse PCE method is proposed to solve this problem, and it restores
the complete model response almost accurately by selecting a small number of basis
that dominates the system output. �0-norm is the most widely used regularization crite-
rion, i.e. limit the degree of non-zero coefficients by solving the following optimization
problem:

ĉ = argmin
c∈RP

‖c‖0 subject to Y = �c. (5)

However, Eq. 5 is a non-convex optimization problem, which can be difficult to solve in
practice due to its NP-hardness. A typical practical technique is to replace the �0 norm
term with the �1 norm term [43], and the new objective function becomes

ĉ = argmin
c∈RP

‖c‖1 subject to Y = �c. (6)

2.2 Error estimation andmodel evaluation

The optimization problem defined in Eq. 6 is usually solved by relaxing the constraint, i.e.

ĉ = argmin
c∈RP

‖c‖1 subject to ‖�c − Y‖2 ≤ ε, (7)

where ε is recorded as the truncation error, determined by measurement noise, which
is a more natural parameterization choice. If ε is too large, the reconstructed PC is not
accurate enough; however, if ε is too small, the reconstructed PCmay be over-fitting. The
leave-one-out (LOO) error is used to measure the degree of over-fitting in practice, which
can be expressed as follows:

ELOO = 1
n

n∑

i=1

(
yi − yPC(ξi)

1 − hi

)2
, (8)

where hi denotes the i-th diagonal element of the matrix �
(
�T�

)−1
�T . The ELOO can

be calculated easily when the least squares solutionw.r.t full design are available (see [27]).
We choose the PCEmodel with the smallest LOO error during the iteration of finding the
best sparse solution.
When comparing the performance of different surrogate models, our interest lies in

the precision and uncertainty. The relative MSE is a widely used measure to quantify the
precision of a surrogate, which is defined by the following equation:

Relative MSE =
∑n

i=1 (yi − yPC(ξi))
2

∑n
i=1 (yi − ȳ)2

, (9)

where ȳ = 1
n

∑n
i=1 yi. As for the uncertainty, we pay special attention to the probability

density function (PDF) or cumulative distribution function (CDF).

2.3 The concept of information entropy

The type of entropy addressed in this work is information entropy that was first pro-
posed by Shannon in 1948 [36]. The most general explanation of entropy is the measure
of uncertainty, which refers to the information contained in the system [44]. Specifically,



Zeng et al. Advances in Aerodynamics             (2022) 4:3 Page 5 of 19

the more information the system contains, the smaller the uncertainty and corresponding
entropy.
For any random variable X = {x1, . . . , xn}, the definition of information entropy is

expressed in terms of a discrete set of probabilities P(xi), as follows:

H(X) =
n∑

i=1
P(xi) ln (P(xi)) . (10)

Similarly, for a continuous random variable, differential entropy can be obtained:

H(x) = −
∫

p(x) ln p(x)dx. (11)

Based on information entropy, when predicting a probability model of random vari-
ables, the main idea of the MEP is that among all candidate distributions, the distribution
that maximizes entropy should be selected. In other words, the best probability distribu-
tion has maximal entropy, which comes up with an optimization problem:

maximize H = −
∫

p(y) ln p(y)dy subject to ‖�c − Y‖2 ≤ ε, (12)

where p(y) is the probability density function of element y in Y .
Hence, by combining MEP and the classical sparse PCE techniques, information

entropy can be used as a sparse optimization criterion for the sparse PCEmodel for it can
retain the largest amount of uncertainty while making it sparse.

3 Methodology
In this section, two adaptive methods are proposed. The first is the re-optimization of
results achieved with the alternative model based on entropy, which can be thought of as a
simple external plug-in. The second is hybrid optimization using entropy as a regularizer,
which is the main method of this paper and it is more advantageous in high-dimensional
problems.

3.1 Entropy-based re-optimization sparse PCE

As mentioned at the end of Section 2.3, the aim of this paper is to learn a sparse model
and preserve the maximum uncertainty of the results. Thus, we can directly perform
entropy-based secondary optimization from Eq. 12 based on existing sparse algorithms
(i.e., entropy-based re-optimization sparse PCE). Typically, solving problems with the
sparse PCE surrogate model can be converted to:

Y =
∑

i∈I
� ic, (13)

where I is the sparse index set.
With the classical sparse PCEmethod, we get the model response Y S. Additional model

responses are produced through the repeated sampling process, which can then be re-
optimized based on entropy sorting. Our goal is to selectW items with the largest entropy
values. The objective function during re-optimization is defined as follows:

ĉ = argmin
J⊂I

‖�J c − Y S‖2, (14)
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where Y S is the model response obtained by the classical sparse method, and index set J
satisfies:

J = argmax
J⊂I

H (Y S) subject to card(J ) ≤ W , (15)

with H (Y S) �
∑W

j=1 H(yj), where yj = � jcj.
Since calculating the differential entropy of Y S is more complicated, it can be approx-

imated by the Shannon entropy of Monte Carlo. For example, if we repeat sampling m
times as the verification set, the Shannon information entropy of yj can be obtained:

H
(
yj

)
= −

m∑

i=1
y2ij ln y

2
ij. (16)

The pseudo code of the algorithm for entropy-based re-optimization sparse PCE is as
follows:

Algorithm 1 Entropy-based re-optimization sparse PCE (Ent-PCE)
Input: � : a set of candidate basis functions; y: observation vector.W : desired sparsity of

Ent-PCE;
1: Establish a surrogate model based on a classical sparse PCE algorithm.
2: Repeat samplingm times as the verification set and get the response YS.
3: for each j = 1, . . . , p do
4: yj = � jci
5: Calculate Shannon entropy of yj: Hj = − ∑m

i=1 y2ij ln y2ij
6: end for
7: Sort the indicators according toH ; J isW indices corresponding to the largest value

of entropy.
8: Least-squares solution based on index set J : ĉ = argminJ∈I ‖�J c − Y S‖2

The main advantage of this method is that it can be easily implemented and extended to
various sparse methods without the need to modify their internal codes. In other words,
it is universal, maneuverable, and can be considered as an external plug-in. However, it
requires longer computation time when dealing with high-dimensional cases because of
the OLS algorithm used in the re-optimization process.

3.2 Hybrid entropy-based comprehensive sparse PCE

In Section 3.1, a universal entropy-based re-optimization sparse PCE method is pro-
posed, which is essentially a subsequent optimization of the results trained by classical
sparse PCE methods. However, its re-optimization is performed with the features and
coefficients retained by a sparse algorithm, hence we cannot retrieve features that have
been discarded, which may be of great influence for the overall uncertainty. As the com-
plexity of the model increases, the discarded features by the classical sparse method will
also increase, so the optimization effectiveness of Ent-PCE will be limited. Therefore, in
different sparse methods, we can consider the role of information entropy when select-
ing features. In fact, there are several commonly used sparse algorithms in the literature,
some of which can be found in open-source toolboxes. In this section, for these specific
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sparse PCE algorithms, a method involving hybrid entropy-based comprehensive sparse
PCE will be proposed.
In the PCE model, the unknown coefficients correspond to polynomial chaos basis.

When we reduce the dimension of the coefficients, it can be seen as a feature selection
for the polynomial chaos basis. From the perspective of regression, we usually select the
feature basis that has a greater impact on the residual, such as the OMP method. How-
ever, the polynomial chaos basis stores the probabilistic information of the predicted
response. From the MEP perspective, the feature basis with larger entropy contains more
uncertainty information and is more important to the response.
To maximize the input uncertainty distribution in the response, we introduce the

entropy of the basis function to regularize the classical model. Hence, the objective
function is re-defined as follows:

ĉ = argmin
c∈RP

‖�c − Y‖2 + λ (‖c‖1 + γH(�I)) , (17)

An example of a hybrid entropy-based comprehensive sparse PCE algorithm based on
the classical OMP method is Algorithm 2. The suffix indicates the classical sparse PCE
algorithm being optimized.

Algorithm 2 Hybrid entropy-based orthogonal matching pursuit (HEnt-OMP)
Input: � : a set of candidate basis functions; y: observation vector.
1: Initialize: feature index set: I = ∅; residual vector:r = y
2: for each i = 1, . . . , n do
3: Find � i ∈ � which is closely related to the residual and has a larger entropy value

by solving:
4: � i = argmax� i∈�\�I

( |〈� i,r〉|‖� i‖2 − γ
∑P

j=1 �2
ij ln

(
�2

ij

))

5: Update the index set: I = I ∪ {i}
6: Compute the coefficients c∗ using only the active indices by least-squares:
7: c∗ = argminI∈R ‖y − �Ic∗‖2
8: Update the residual: r = y − �Ic∗

9: end for

In each iteration, OMP selects the regressor that is most closely correlated with the
current residual, while HEnt-OMP introduces entropy as a penalty term on this basis. The
regressor must not only be related to the residual but also ensure that its entropy value
is large. From this, we can find that HEnt-PCE only needs to calculate the entropy of the
basis function once at the beginning of feature selection, so the extra computational effort
is almost negligible.
It is worth noting that in the methodology, the prefixes ‘Ent-’ and ‘HEnt-’ indicate opti-

mization routine and the suffixes ‘PCE’ represent universal sparse PCE algorithms. While
in the algorithm as well as in the experiments, the suffix is replaced by the specified clas-
sical sparse PCE algorithm. Compared with Algorithm 1, this method is more targeted
and has faster computing speeds.
However, due to the different classical methods, the selection of regularization param-

eters in different methods is also worthy of attention.
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3.3 Parameter optimization and selection

Before conducting experiments, we need to set some parameters for these algorithms.
For example, in Algorithm 1, we are concerned with the effects of changing parameter
W on the final sparse result. Similarly, when using hybrid entropy-based algorithms, γ is
a parameter worthy of attention. For each of the various methods used in entropy-based
algorithms, the choice of parameters will be different.
The selection of parameterW is natural because we can set it directly according to the

desired size of the active basis. While regarding the selection of γ , we can use a small size
of experiment design in preliminary experiments before conducting the formal experi-
ment, so that γ can get an ideal value. The algorithm is designed as Algorithm 3, the
idea of which comes from DIRECT algorithm [45, 46]. The algorithm equates the search
interval into k subintervals, and calculates the value of function at the boundary point of
the subinterval, then takes the point with the lowest value as the centroid, the length of
the subinterval as the length of the interval, thus establishing a new space to repeat the
previous process until the value of function is below the set value ε.

Algorithm 3 Parameter selection
Input: S : surrogate model with unknown γ ; γ9: the upper bound of γ
1: while The variance of Relative MSE is less than ε do
2: for each i = 0, . . . , k do
3: l = γk−γ0

k , γi = γ0 + i × l
4: Run the model S with γi and calculate Relative MSE: ei
5: end for
6: Find the index i Find the index that minimizes the Relative MSE: i = argmini ei
7: Update the boundary: γ0 = γi − 1

2 l, γk = γi + 1
2 l

8: end while

4 Experiment analysis
In the experiments, we analyze and compare the effectiveness of four classical sparse
PCE algorithms (OMP [47], LARS [27], SP [48], and BCS [49]) and two entropy-based
optimized algorithms on the basis of them.
To implement the benchmark, we consider an Ishigami function (d = 3), an OAK-

LEY & O’HAGAN function (d = 15) and a high-dimensional function (d = 54) to
show the performance of the methods in low-dimensional and high-dimensional cases
respectively. Both benchmark functions have been inserted small random interference
items to better fit the actual. The LHS sequence is used to generate sample points in
the experiment. Each experiment was repeated 50 times, and the mean value is given to
compare performance of the used methods. To further prove the effective performance
of the proposed method, the approach is applied to a more realistic CFD application:
RAE2822 airfoil (d = 5). For all experiments, we use the general-purpose uncertainty
quantification software UQLab [35].

4.1 Toy model

Before starting the formal experiment, we first consider a toy model to explain the prob-
lem of this paper. The classical sparse method only considers the value of coefficients,
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Table 1 Comparison of relative MSE and KL (Kullback-Leibler) divergence for the toy model

Results OMP Ent-OMP HEnt-OMP

Relative MSE 0.237 0.217 0.249

KL Divergence 912.14 706.64 365.34

rather than the impact of feature changes on uncertainty. So we constructed a function
that is a combination of smooth function and high-order features.

f (x, y) = 6sin(y) + 4x(cos(x) + 1) + 5x6 + 10−109x · x22 (18)

If classical methods such as OMP are used directly, these high-level features will be
discarded, regardless of whether they contain important information or not. As shown in
Table 1 and Fig. 1(a) and (b), using the two methods proposed in this paper to optimize
can make the probability distribution closer to the original distribution, while keeping the
relativeMSR at a small value. Meanwhile, Fig. 1(c) shows the retained basis functions, and
the meaning of the label of it is the method (number of retained terms): index among all
basis functions. It can be found that Ent-PCE is sparse on the result of OMP, so the index
set of selected features are subsets of the index set of the original result, while HEnt-PCE
takes the role of information entropy into account at the time of feature selection, so some
higher-order features that were originally discarded by OMP are retained.

4.2 Case 1: the Ishigami function

The Ishigami model is a non-linear, non-monotonic smooth three-dimensional function:

Y (x1, x2, x3) = sin x1 + a sin2 x2 + bx43 sin x1, (19)

where x1, x2, and x3 are three independent input random variables uniformly distributed
on [−π ,π ], and in typical a = 7, b = 0.1.
We use the entropy-based re-optimization method and hybrid entropy-based compre-

hensive method on the basis of other sparse methods for optimization, and the results are
shown in Figs. 2, 3, 4, 5.

Fig. 1 A two-dimensional toy model consisting of a combination of simple functions followed by a
high-dimensional function with small coefficients. (a) The relative error of each y; (b) The probability density
function of the entire response; (c) The coefficients corresponding to the reserved basis functions with their
indices
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Fig. 2 Performance comparison of OMP, Ent-OMP and HEnt-OMP w.r.t. the Ishigami model. (a) The
relationship between the relative MSE and the size of DoE; (b) The relationship between the sparsity level of
several methods and the size of DoE; (c) Enlarged details of the reconstructed PDF

Fig. 3 Performance comparison of LARS, Ent-LARS and HEnt-LARS w.r.t. the Ishigami model. (a) The
relationship between the relative MSE and the size of DoE; (b) The relationship between the sparsity level of
several methods and the size of DoE; (c) Enlarged details of the reconstructed PDF

Fig. 4 Performance comparison of SP, Ent-SP and HEnt-SP w.r.t. the Ishigami model. (a) The relationship
between the relative MSE and the size of DoE; (b) The relationship between the sparsity level of several
methods and the size of DoE; (c) Enlarged details of the reconstructed PDF

Fig. 5 Performance comparison of BCS, Ent-BCS and HEnt-BCS w.r.t. the Ishigami model. (a) The relationship
between the relative MSE and the size of DoE; (b) The relationship between the sparsity level of several
methods and the size of DoE; (c) Enlarged details of the reconstructed PDF
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Fig. 6 Performance comparison of OMP, Ent-OMP and HEnt-OMP w.r.t. the OAKLEY & O’HAGAN function.
(a) The relationship between the relative MSE and the size of DoE; (b) The relationship between the sparsity
level of several methods and the size of DoE; (c) Enlarged details of the reconstructed PDF

In (a) and (b), the x-axis is the size of DoE and the y-axis is relative MSE and level
of sparsity (number of items retained/number of items in complete PCE) respectively. It
can be noticed that both optimization methods can achieve a good degree of optimiza-
tion in low dimensions. Specifically, relative MSE and level of sparsity are both reduced
compared to the classical method when using the same size of DoE. In other words,
entropy-based methods require fewer sample points when a certain level of precision or
sparsity is required. Furthermore, (c) show the PDF using 200 DoE. It can be observed
that the optimized PDF is closer to the sample point, which is consistent with the previous
theory.

4.3 Case 2: the OAKLEY & O’HAGAN function

The OAKLEY & O’HAGAN function was proposed in 2010 [50]. It is a high-dimensional
function and commonly used in uncertainty quantification and sensitivity analysis, which
is expressed as follows:

f (x) = a1Tx + a2T sin(x) + a3T cos(x) + xTMx. (20)

The independent distributions of the input random variables are xi ∼ N (0, 1), i =
1, . . . , 15. a1, a2, a3 are 1 × 15 vectors, and M is a square matrix, and the data are taken
directly from [50].
From the results of Relative MSE shown in (a) of Figs. 6, 7, 8, 9, in the case of high

dimensionality, both optimization methods can improve on the original classical meth-
ods. However, Ent-PCE can only be slightly optimized based on the existing results,
while HEnt-PCE can achieve better optimization results. This is because Ent-PCE is a re-
optimization method based on the classical sparse PCE. In the low-dimensional case, the

Fig. 7 Performance comparison of LARS, Ent-LARS and HEnt-LARS w.r.t. the OAKLEY & O’HAGAN function.
(a) The relationship between the relative MSE and the size of DoE; (b) The relationship between the sparsity
level of several methods and the size of DoE; (c) Enlarged details of the reconstructed PDF
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Fig. 8 Performance comparison of SP, Ent-SP and HEnt-SP w.r.t. the OAKLEY & O’HAGAN function. (a) The
relationship between the relative MSE and the size of DoE; (b) The relationship between the sparsity level of
several methods and the size of DoE; (c) Enlarged details of the reconstructed PDF

low-dimensional features selected by the classical sparse algorithm may be sufficient to
represent the overall features of the original model. And when the model dimension is
high, the classical sparse method may discard those high-dimensional features that affect
the overall uncertainty, and we cannot retrieve them in the next re-optimization process.
Therefore, HEnt-PCE is much better than Ent-PCE in the high-dimensional case for opti-
mization. Compared to HEnt-PCE, Ent-PCE can control sparsity better, as can be seen in
(b). However, in the higher-dimensional cases, Ent-PCE requires a large-scale OLS cal-
culation, which can lead to an increase in computation time, and therefore HEnt-PCE is
preferred for the higher dimensional cases where sparsity is not required.

4.4 Case 3: the high-dimensional function

To demonstrate the performance of HEnt-PCE in higher dimensional conditions, con-
sider a high-dimensional function from UQLab, which is an analytical model of the form:

f (X) = 3 − 5
54

54∑

i=1
iXi + 1

54

54∑

i=1
iX3

i + ln
(

1
162

54∑

i=1
i
(
X2
i + X4

i
)
)

+ X1X2
2 + X2X4 − X3X5 + X51 + X50X2

54

(21)

where Xi ∼ U([ 1, 2] ), i 
= 20, and X20 ∼ U([ 1, 3] ).
As methods we proposed are further optimized based on existing sparse PCE model,

the performance would be limited for high dimensional cases. For the Ent-PCE models,
since the high order features are dumped by the sparse PCE model, there exists little
room for further optimization. As a result, we only compare the results of HEnt-PCE and
classical PCE, as can be seen in Figs. 10, 11, 12, 13. It can be seen that the HEnt-PCE still
outperforms the classical method in low-order settings.

Fig. 9 Performance comparison of BCS, Ent-BCS and HEnt-BCS w.r.t. the OAKLEY & O’HAGAN function.
(a) The relationship between the relative MSE and the size of DoE; (b) The relationship between the sparsity
level of several methods and the size of DoE; (c) Enlarged details of the reconstructed PDF
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Fig. 10 Performance comparison of OMP, Ent-OMP and HEnt-OMP w.r.t. the high-dimensional function.
(a) The relationship between the relative MSE and the size of DoE; (b) The relationship between the sparsity
level of several methods and the size of DoE; (c) Enlarged details of the reconstructed PDF

Fig. 11 Performance comparison of LARS, Ent-LARS and HEnt-LARS w.r.t. the high-dimensional function.
(a) The relationship between the relative MSE and the size of DoE; (b) The relationship between the sparsity
level of several methods and the size of DoE; (c) Enlarged details of the reconstructed PDF

Fig. 12 Performance comparison of SP, Ent-SP and HEnt-SP w.r.t. the high-dimensional function. (a) The
relationship between the relative MSE and the size of DoE; (b) The relationship between the sparsity level of
several methods and the size of DoE; (c) Enlarged details of the reconstructed PDF

Fig. 13 Performance comparison of BCS, Ent-BCS and HEnt-BCS w.r.t. the high-dimensional function. (a) The
relationship between the relative MSE and the size of DoE; (b) The relationship between the sparsity level of
several methods and the size of DoE; (c) Enlarged details of the reconstructed PDF
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Table 2 Reference value of uncertainty factors in experiments

Uncertainty Factors Reference Value

Mach number 0.729

Angle of attack 2.31

Free-stream temperature 288.15

Reynolds number 6.5 × 106

Reynolds length 1.0

4.5 Case 4: RAE2822 airfoil

The final application involves the RAE2822 airfoil, a supercritical airfoil, which is a chal-
lenging case used by various researchers [24, 51] to test for quantification of uncertainty.
The reference values of uncertainty factors in the test are shown in Table 2. We specify
that all random variables are subject to a uniform distribution, with the upper and lower
boundaries at a reference value of 1 ± 5%.
For deterministic CFD solutions, the Spalart-Allmaras one-equation turbulence model

is used for turbulence modeling, and SU2 simulation software is used as a black-box
solver. The model of 5th order, using different sparse PCEmethods is constructed with 20
samples. The results (pressure coefficient) were obtained with four classical sparse PCE
methods and two improved methods proposed above. The mean, standard deviation, the
CDF figure of one random point in the RAE2822 airfoil and relative error are shown in
Fig. 14 (OMP), Fig. 15 (LARS), Fig. 16 (SP), Fig. 17 (BCS).
The airfoil has upper and lower surfaces, which are marked in (a). For easier presenta-

tion, the results are expanded in (b)-(d) with the line x = 0 as the dividing line, with the
lower surface on the left and the upper surface on the right. For Figs. 14—17, it can be
observed that the optimized results are in acceptable agreement with those of the classical
sparse models and the mean of the sampling points (shown in (a)). The main difference
between classical sparse models and corresponding optimized models is the standard

Fig. 14 Performance comparison of OMP, Ent-OMP and HEnt-OMP w.r.t. the RAE2822 airfoil
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Fig. 15 Performance comparison of LARS, Ent-LARS and HEnt-LARS w.r.t. the RAE2822 airfoil

deviation (shown in (b)). Each position will form a standard deviation, because of the
sensitivity of the RAE2822 airfoil model. The standard deviations of the classical sparse
models are usually greater than the actual results, while optimization can reduce the stan-
dard deviation and achieve better results by adjusting the parameters. However, the least
squares used in Ent-PCE will make the standard deviation too small. Moreover, although
the dimensionality is not high, one REA2822 case needs to build hundreds of PCE mod-
els (each position of the airfoil needs a model, the number is related to the density of grid

Fig. 16 Performance comparison of SP, Ent-SP and HEnt-SP w.r.t. the RAE2822 airfoil
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Fig. 17 Performance comparison of BCS, Ent-BCS and HEnt-BCS w.r.t. the RAE2822 airfoil

nodes), which takes longer calculation time and cost for Ent-PCE. Thus, HEnt-PCE is a
better choice in such a situation. Although the relative error of the mean value remains
hardly changed, the relative error of the standard deviation of the optimized results is
reduced (shown in (c) and (d)), so the results will be closer to the original distribution.
CDF figures were evaluated for the distribution results at a random point on the airfoil
(shown in (e)). It can be seen that optimized models greatly improve the distribution of
the model based on the classical models, which is in line with the inference made above.

5 Conclusion
In this paper, an effective framework of sparse PCE is realized and verified. The main
contribution of this paper is the development of two adaptive regression methods for
optimizing sparse polynomial chaos expansion, Ent-PCE and HEnt-PCE. The former is
essentially a followed-up optimization of the results that have been trained by classical
sparse methods, and can be easily implemented and extended to various sparse methods;
the latter embeds a penalty term into any known sparse algorithms, and allows important
higher-order features that may be discarded by classical sparse methods to be retained.
The advantages of the proposed methods are twofold. First, the regularization method

in the classical sparse PCE model is followed, which improves accuracy and reduces
sparsity while avoiding over-fitting problems. Secondly, considering the uncertainty prop-
agation in the model, the distribution rules of model input are passed, so the output
retains uncertainty to the greatest extent.
Furthermore, selection of regularization parameters is changed, because of inconsis-

tencies in the standards for feature selection of different classical sparse PCE models.
To achieve the best optimization effect, a set of parameter selection rules was formed.
For verification, several applications were considered. Two benchmark analysis functions
were initially studied. The results show that the two proposed algorithms can achieve a
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certain optimization effect. Among them, Ent-PCE is simpler and more universal in low-
dimensional situations. In the case of high dimensions, as HEnt-PCE can retain important
higher-order features and does not need secondary calculation, the results are more accu-
rate and the calculation speed is faster. Additionally, the algorithm effect was analyzed
and compared through the wind tunnel application. The experimental results show that
Ent-PCE has greater limitations, but it can be used independently and can easily opti-
mize small-scale models. HEnt-PCE is more efficient and can achieve higher accuracy, so
it is an effective method that is worth being promoted at the industrial level to establish a
high-quality sparse PCE model.
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