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Abstract

The combination of Cartesian grid and the adaptive mesh refinement (AMR)
technology is an effective way to handle complex geometry and solve complex flow
problems. Some high-efficiency Cartesian-based AMR libraries have been developed to
handle dynamic changes of the grid in parallel but still can not meet the unique
requirements of simulating flow around objects. In this paper, we propose an efficient
Cartesian grid generation method and an information transmission approach for the
wall boundary to parallelize the implementation of ghost-cell method (GCM). Also, the
multi-valued ghost-cell method to handle multi-value points is improved to adapt to
the parallel framework. Combining the mentioned methodologies with the
open-source library p4est, an automatic and efficient simulation of compressible flow is
achieved. The overall performance of the methodology is tested through a wide range
of inviscid/viscous flow cases. The results indicate that the capability and parallel
scalability of the present numerical methodology for solving multiple types of flows,
involving shock and vortices, multi-body flow and unsteady flows are agreeable as
compared with related reference data.

Keywords: Cartesian grids, AMR, Parallel computing, Compressible flow, Immersed
boundary method

1 Introduction
Concerns about the cost and reliability of grid generation were raised repeatedly in the
surveys and workshops of the computational fluid dynamics (CFD) community [1]. Com-
pared with structured/unstructured grids, Cartesian grids have several advantages in
automatic grid generation, highmesh quality, and easy coupling with high-order schemes,
especially in applications that can benefit from the AMRmethod [2]. Therefore, the simu-
lation of incompressible/compressible flow based on Cartesian grids has always been one
of the CFD research topics.
However, in the Cartesian grid system, the grids can not completely coincide with the

boundaries of the object surface. Thus the resulting wall boundaries are expressed as a set
of staircase-like facets [3]. Accordingly, additional treatments for the wall boundaries are
required to recover smooth surface geometries. Generally, there are mainly two types of
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existing methods to reproduce smooth wall boundaries on a non-conforming Cartesian
grid: the cut-cell methods [4], and the immersed boundary method (IBM) [5, 6]. The cut-
cell method has the advantages of generating body-fitted grids automatically and ensuring
conservation at the boundary, but the intersection calculation at the wall boundary is
complex and special treatments are required due to the extremely small cells generated
by cell reshaping. Alternatively, by adding a body forcefield in the momentum equation to
simulate the presence of the immersed boundaries, IBM can avoid complex geometrical
algorithms, thereby maintaining simplicity and robustness of grid generation, especially
for the simulation of flows with complex and/or moving boundaries. Nowadays, IBM has
been widely used in both inviscid and viscous flow [7, 8]. Tamaki et al. [9] and Constant
et al. [10] applied the IBM method in high Reynolds number flow simulations and made
significant progress. Based on IBM, the ghost-cell method (GCM) was first proposed
by Forrer et al. [11] and applied to the problem of inviscid compressible flow, and then
Dadone et al. [12] conducted in-depth and detailed research on the ghost-cell method.
The main idea of GCM is to assume that the object is embedded in the flow field, and the
boundary condition is imposed on the ghost-cell inside the object through reconstruc-
tions. Regarding the latest development and application of IBM, interested readers are
encouraged to refer to [3] and the references therein.
On the other hand, AMR is used in the Cartesian grid system to play its advantages

fully. Because it can solve problems dealing with phenomena appearing at multiple and
different spatial and temporal scales, it has succeeded in multiphase flow [13], flow with
complex geometry [14], turbulent flow [15], etc. Generally, the cell-based AMR method
employs tree structures to store the mesh. On the basis of this method, the specific cell
can be easily refined and coarsened by recursively dividing them into sub-cells at a fixed
scale. However, the adaptive Cartesian grid can not be properly extended in parallel com-
puter architectures due to the particularity of the storage data structure, grid traversal
algorithm, and neighbor recursive search algorithm. The appearance of applications with
new AMR frameworks such as CHOMBO [16] or p4est [17, 18] gives us the possibility
to solve the issue. Recently, p4est has attracted wide attention because of the benefit of
not having strict modularity restrictions. It was successfully applied in the refinement of
CAD surfaces [19], flow simulation of hexahedron body-fitted adaptive grid [20], and is
also used in a new version of the noted finite element library deal.II [21].
However, we noticed that most researches mentioned above are simple flow without

objects. When employing these AMR frameworks to deal with compressible flows con-
taining objects, it will bring some new difficulties. These difficultiesmainly come from the
parallelization of GCM, which are usually not considered in the above AMR framework.
First of all, the above libraries are not specifically designed for the flow around objects,
while it is necessary for GCM to determine the cells that intersect with the object surface
when generating the grid. Secondly, the MPI communication of some special cells also
needs to be re-planned. Some ghost-cells and their reference points might be in the dif-
ferent processes, while the ghost layer provided for communication in these AMR frame-
works might not be enough for GCM. In addition, the multi-valued ghost-cell method
[22] generally used to handle thin objects also brings challenges when parallelized. Stor-
ing all possible multi-value points for ghost-cell will impose a huge burden on the parallel
framework and communications, while ignoring themulti-value points will make the flow
simulation of delta wings and other shapes unavoidable errors. In response to the above-
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mentioned problems, the main contributions of this paper are specifically manifested in
three aspects. First we built a module for grid generation and used a fast intersection algo-
rithm based on the axis aligned bounding box (AABB) theorem [23] to classify cells. The
mesh generator can generate adaptive grids with 15 million cells in parallel for complex
3D geometry (such as DLR-F6) in 10 minutes on a server with two Intel(R) Xeon(R) E5-
2680 V3 CPUs (48 cores). Second, special communication relationships are established
for all the ghost-cells and their corresponding points that might be in different processes
to achieve simple and efficient parallel communication. The third aspect is that the algo-
rithm for finding multi-value points is improved and combined with the communication
relationship mentioned above to make it more suitable for complex three-dimensional
shapes under the parallel framework. Eventually, by combining the in-house GCM-based
automatic serial flow solver with p4est library, and then integrating the above methods, a
new parallel adaptive Cartesian solver was developed, which is named CABA (CArtesian
Body-fitting Adaptive). It can automatically generate computational grids for arbitrary
three-dimensional objects and can solve multi-body and unsteady problems of inviscid
and laminar flow with ghost-cell method for the wall boundary condition.
This paper is organized as follows. In Sec. 2, the relating methodologies, including the

numerical approach, mesh generation, ghost-cell method and parallelization method, are
presented. Numerical results, including parallel tests and inviscid/viscous flow tests, are
discussed in Sec. 3 to validate the capability of CABA. Finally, conclusions are drawn in
Sec. 4.

2 Numerical methodology
2.1 Governing equations and numerical approach

The compressible Navier-Stokes equations in the integral and conservation form are
considered, which can be written as follows:

∂

∂t

∫
�

Wd� +
∮

∂�

(Fc − Fv)dS = 0, (1)

where ∂� is the boundary of the control volume,W is the vector of conserved variable, Fc
and Fv correspond to the vectors of the inviscid and viscous flux respectively. The vectors
are given as:
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, (2)

where ρ is the density; u, v,w are the velocity components in x, y, z directions, respectively;
P is the pressure; E and H are the total energy and the total enthalpy per unit mass. τij are
the viscous stress tensor for Newtonian fluids, which are defined as:
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(3)

where μ is molecular viscosity coefficient calculated by the Sutherland law [24], and λ =
−2/3μ with Stokes hypothesis.
For the compressible Euler/Navier-Stokes equations, the flow states need to be recon-

structed on the left and right sides of an interface of neighboring control volumes,
as sketched in Fig. 1. The governing equations are discretized using the finite volume
formulation, and a cell-centered, second-order method is used in this paper [24]:

UL = Ui + �i · (∇Ui · rL),UR = Uj + �j · (∇Uj · rR), (4)

where rL and rR represent the vector from the left and right cell center to the face mid-
point. Ui is the gradient at cell center i, Uj is the gradient at cell center j, and they are all
calculated by the Green-Guass method [25] in this paper. �i is the limiter for cell cen-
ter i, �j is the limiter for cell center j, and they are all calculated by the Venkatakrishnan
limiter [26]. The inviscid flux Fc at each cell interface is computed by the HLLC scheme
developed by Toro et al. [27], and the viscous flux Fv is approximated by using 2nd order
accurate central difference scheme in Ref. [28]. The solution is updated by using the
explicit three-stage third-order Runge-Kutta method [24], and the CFL number is set to
0.8 for all examples in this paper.

2.2 Mesh generation

The process for generating an adaptive Cartesian grid is shown in Fig. 2. The entire pro-
cess is highly parallelized and automated. All the user needs to do is to specify the input

Fig. 1 Reconstructions of the states on adaptive Cartesian grid
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Fig. 2 The overall framework of the grid generation process in CABA

geometry file, the calculation domain and the maximum level of refinement. Figure 3
shows the changes of the grid during the generation process of DLR-F6 model. In addi-
tion, it should be emphasized that the second and fifth steps of the process are critical
to the efficiency of generating grid and the quality of the grid. Therefore, the detailed
strategies for these two steps are given below.
The second step in the process is to determine the intersection of the cell and the object

surface. For complex three-dimensional geometric shapes, the number of a high-quality
Cartesian grid often reaches to the order of tens of millions. For such a situation, an effi-
cient algorithm for judging the intersection of the object surface and the cell is highly
needed. Here, a fast intersection test [23] that is based on the axis aligned bounding box
(AABB) theorem is employed in our work. It is based on Plucker coordinate and tests the
ray against the silhouette of the AABB, instead of testing against individual faces of the box
or comparing intersection intervals. The algorithm is performed using only dot products
and comparisons while the classic algorithm requires division. Its computational simplic-
ity results in excellent performance. After quickly identifying the cells that intersect the
wall boundary, these cells will be refined recursively until the maximum refinement level
is reached as shown in Fig. 3(c).
The fifth step in Fig. 2 is to establish the transition zone of the grid. Refining only the

intersecting cells may result in the cell size in the boundary layer being too large, thus the
obtained mesh needs to be further refined. The precise distance to the object surface is
calculated for the cells with level R and R−1, where R is the maximum level of refinement.
The rest of the cells only calculate the rough distance to the object surface to save cal-
culations. Then the cells will be recursively refined if the distance satisfies the following
relationship:

D < r · h/2, (5)

where D is the distance to the object surface, r is the level of the cell and h is the length
of the cell. Then, the resulting grid fits the object surface model to a large extent, and the
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Fig. 3 The changes of the grid during the generation process of DLR-F6 model

size of the grid is guaranteed in the boundary layer and nearby areas. Figure 3(d) shows
the grid with transition zone.
According to our experience, the maximum refinement level and the number of surface

meshes of the object are the key factors that determine the time to mesh generation. In
order to capture themain flow phenomenon in specific flow, theminimum size of the grid
should be estimated in advance, so that themaximum refinement level is also determined.
The minimum size of the triangular mesh of the surface should preferably be limited to
match the level, so that the time to generate the mesh can be minimized.
After the entire process, a high-quality computational grid is obtained. For the model

of DLR-F6, it contains 16,280 triangular surface meshes and it takes about 600 seconds
to generate the final grid of 15 million. For models with more complex surface, such as
the COVID-19 model with 188,280 triangular surface meshes, the time to generate 3 mil-
lion grids is about 500 seconds. The final adaptive grid is shown in Fig. 4. Furthermore,
for arbitrary shapes, CABA can automatically and efficiently generate high-quality com-
putational grids without any manual intervention. This is an important part of solving
large-scale and complex problems on the Cartesian grid. The cases were tested on a server
with two Intel(R) Xeon(R) E5-2680 V3 CPUs (48 cores).
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Fig. 4 The adaptive grid generated by CABA for COVID-19 virus

After the above process, high-quality grids can be obtained. But they are not capable of
simulating complex flows. In order to accurately capture flow phenomena such as shock
waves and vortices, we perform mesh refinements based on the characteristic of the flow
field. The following criteria are mainly used in this paper to capture the special flow field
structures: the divergence of velocity, the curl of velocity, or both of them. Their specific
expressions are as follows [29]:

τci = |∇ × V |h
r+1
r

i , τdi = |∇ · V |h
r+1
r

i , σc =
√∑N

i=1 τ 2ci
N

, σd =
√∑N

i=1 τ 2di
N

, (6)

where N is the total number of cells and hi is the length scale of the cell, computed as
hi = r√�i with � being the volume of the cell. Here we use the standard deviations of
divergence and curl as the sensors, the conditions can be described as:

(1) refine: when τci > w1σc or τdi > w2σd ,
(2) coarsen: when τci < w3σc and τdi < w4σd ,

where wi(i = 1, 2, 3, 4) are adjustable coefficients based on different problems.
After two kinds of adaptations, large-scale and high-quality meshes for arbitrary com-

plex shapes are generated, besides, through mesh refinements the steady and unsteady
flow phenomena can be automatically captured. Note that the whole process is automatic
and efficient without manual intervention.

2.3 Parallel computing of adaptive Cartesian grid

Since the adaptive Cartesian grid is continuously refined and coarsened with the flow
characteristics, it brings many difficulties in large-scale high-performance computing,
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Fig. 5 Left: Z-order curve traversal of the quadrants in four trees with different orientation of the forest and
partition into four processes which are distinguished by different colors. Right: the corresponding
representation of the domain using a quadtree

such as load balancing, reducing communication cost, and search algorithm. And, gen-
erally, the storage of tree structure used in AMR is made in linear arrays to increase
efficiency. However, this method causes a bad cache locality making it difficult to paral-
lelize. Up to now, there are many cell-based parallel AMR libraries, such as CHOMBO
[16], Dendro [30], and p4est [17, 18]. Among them, only p4est does not have strict mod-
ularity restrictions. Therefore, in this paper, the open-source library p4est [17, 18] is
employed in the in-house CABA solver.
In the solver, multiple original trees represent a discretization of the physical space �.

The trees define a macro layer, their refined cells define a micro layer, and these two layers
make up the domain. The data in the domain is stored in linear tree structure, which is
determined by Z-order curve (a space-filing curve). The property of all kinds of space-
filing curves, which is called compactness, makes the continuity along the space-filing
curve index equal to the continuity in the Cartesian grid. Thus, the Z-order curve could
provide an efficient way of partitioning data for load balancing. Meanwhile, it can help to

Fig. 6 2D schematic of ghost-cell method
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Fig. 7 Multi-valued ghost-cell near a sharp leading edge (different color areas indicate a possible partition
situation)

number the nodes by managing the data memory layout in p4est. As shown in Fig. 5, the
Z-order curve covers both the macro layer and the micro layer, which means a one-to-
one mapping from the spatial coordinates to the index in linear tree storage. And it also
shows the order of the index and load balancing between processes (different colors mean
different processors).

2.4 Ghost-cell method

For Cartesian grid, the immersed boundary method is generally combined to simulate
flow problems because the grid lines are not always aligned with the body [5, 6]. Figure 6
shows a schematic diagram of the ghost-cell method in a two-dimensional case. For closed
curves, the Cartesian grids are classified into three categories by the ray-tracing tech-
nique [31]: flow cell which is completely inside the fluid, boundary cell which intersects
with wall boundary, and solid cell which is completely inside the solid. And the primitive
variables of the ghost-cells are determined by variables on the symmetric point.
For example, the symmetric point of ghost-cell A is on the extension line of AD, where

D is the closest point on the body surface from A. Then C is the symmetric point of cell A
by symmetry, and the primitive variables at the symmetric point are interpolated from the

Fig. 8 Adapted mesh at the final time T = 120 (colored by the process number)
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Fig. 9 Density contours of two-dimensional viscous shock-mixing layer interaction problem. T = 120. Top:
coarse uniform grids (400 × 80). Middle: fine uniform grids (800 × 160). Bottom: adapted grids based on
coarse grid

located cell. By using a first-order pressure extrapolation, the wall pressure is taken as the
value associated with the nearest cell center, which means the normal pressure gradient
is zero. Therefore, the relationship can be expressed as:

PA = PD = PC , ρA = ρD = ρC , (7)

where PD and ρD represent the wall pressure and the wall density of the pointD. Then the
classical non-penetration and slip wall boundary conditions are considered for inviscid
flow, the following equations can be obtained:

Vt,A = Vt,C ,Vn,A = −Vn,C , (8)

For viscous flow, non-slip wall boundary condition is considered and the equations are:

Vt,A = −Vt,C ,Vn,A = −Vn,C , (9)

Fig. 10 Density contours of three-dimensional viscous shock-mixing layer problem on adaptive Cartesian
grids. T = 120
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Fig. 11 Density contours on three kinds of grid at z = 20 plane. T = 120. Top: uniform coarse grids
(400 × 80 × 80). Middle: uniform fine grids (800 × 160 × 160). Bottom: AMR with one refinement level based
on the coarse grid

Then, a relationship between variables of ghost-cell A and symmetric point C is estab-
lished [7, 12]. It needs to be stated that for the high Reynolds number compressible flow,
the wall function method is needed to deal with the boundary conditions of the object
surface. This part is under development so far and will not be introduced in this article.
In particular, it needs to be emphasized that there will be some challenges when imple-

menting the GCM method under the MPI parallel framework. One is that establishing
the relationship between ghost-cell and symmetry point may become very difficult due to
distributed storage. As shown in Fig. 7, ghost-cell A and symmetric point B are not in the
same process, and even point B is beyond the ghost layer used for general parallel commu-
nication. In fact, for a three-dimensional grid of tens of millions, one hundred thousand
ghost-cells might not be able to find the symmetric points in the process. Especially for
three-dimensional situation, just increasing the ghost layer to two layers can not satisfy
all possible symmetric point distributions, let alone the greatly increased communication
cost. The second challenge is that the multi-valued ghost-cell method [22] used to han-
dle thin objects requires additional sets of data to be stored in ghost-cell. However, this
approach will increase the size of the structure of all cells several times. This means that
while greatly increasing the communication costs, only part of the delivered information
around the thin object is useful.
For the first challenge, in order to efficiently transfer information between ghost-cell

and symmetric point after parallelization, we established a special point-to-cell relation-
ship for each group of ghost-cell and symmetric point that are not in the same process. As
long as the grid does not change, these relationships will not change, so the information
can be delivered efficiently. The specific process is as follows:

1. Collect all the symmetric points that can not be found locally and search them
globally. The coordinates of these points need to be temporarily shared globally.
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Fig. 12 Adapted mesh for the problem of inviscid flow over a single NACA0012 airfoil (colored by the
process number)

2. Establish unique relationships between the original processes and the processes where
the symmetric points are located. For a three-dimensional grid of tens of millions,
there might be thousands of relationships that need to be established for each process.

3. Dynamically apply for storage space for the information to be sent and received
according to the established relationship.

4. Connect the symmetric points, ghost-cell and these storage spaces through the
pointer.

Fig. 13 Pressure contours for the problem of inviscid flow over a single NACA0012 airfoil. Left: without
solution-based refinement. Right: with solution-based refinement
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In this way, only one simple communication is required for each time step, and all the
information required by GCM is available. But we still have to face the unsteady prob-
lem involving complex flow, which requires AMR. The continuously change of the grid
means that the above relationships need to be rebuilt frequently, which requires frequent
search for points. Thus, in order to reduce calculation costs, we optimized the follow-up
point-finding logic. Because in CABA, recursive mesh refinement is prohibited during
iteration, each adaptation will not cause drastic changes in the mesh partition. The ID of
the process of the information source received during the first point finding is recorded.
And searching for these “neighboring processes" in each subsequent point finding process
could effectively reduce the calculation cost.
Then, the second challenge encountered when applying GCM to parallelization is dis-

cussed. It has always been the difficulty of GCM to treat thin bodies such as the trailing
edge of the airfoils and the leading edge of the delta wing. If the thickness of a body
becomes smaller than 1.5 times of cell size, some ghost-cells have to handle both sides of
the body as shown in Fig. 7. Cell A inside the geometry is the ghost-cell for the upper side
of the corner surface with symmetric point B, as well as for the lower side with symmetric
point C. Ignoring the multi-value points will cause unavoidable errors in the flow sim-
ulation of shapes such as delta wing. A multi-valued ghost-cell [22] is usually employed
to handle this problem. By sweeping in the three coordinate directions, the ghost-cell A
could have sets of properties computed from both sides of the trailing edge. In a three-
dimensional problem, a ghost-cell may have 3, 4 or even more symmetric points. This
method needs to open up storage space for all possible data of all ghost-cells, which will
greatly increase the cost of parallel communication. And only a few of the additional
information will be used in the simulation of the flow field near the multi-value point.
In order to enhance the accuracy and robustness of the algorithm in calculating three-

dimensional thin shape, the multi-valuedmethod is improved.We collect the intersecting
surfaces of all surrounding boundary cells and search the symmetric point for each sur-
face. By matching the vectors from the center of the cell to the symmetric point with the
normal vectors of the cell surfaces, each ghost-cell can match up to 6 symmetric points in
the three-dimensional case. The information of the local symmetry point can be accessed
by pointer, and the information of the symmetry point of other processes will be passed
through the point-to-cell relationship mentioned above.
In this way, CABA can get asmuch information as possible to fit the surface of the object

when simulating the flow field. Compared with non-special processing of multi-value
points, this method can guarantee the authenticity of the flow simulation near the thin
object. This is of great significance for dealing with three-dimensional pointed objects
such as supersonic wave riders.

3 Numerical results and discussions
In this section, several representative numerical cases are tested to verify the performance
of the developed in-house solver on adaptive Cartesian grid. Specifically, it includes the
problem of two/three dimensional viscous oblique shock-mixing layer interaction, invis-
cid/viscous flow around a single NACA0012 airfoil and two staggeredNACA0012 airfoils,
unsteady viscous flow past one cylinder, three-dimensional inviscid transonic flow over
ONERA M6 wing, three-dimensional viscous flow around a sphere, laminar flow around
delta wing, etc.



Qi et al. Advances in Aerodynamics            (2022) 4:21 Page 14 of 30

Fig. 14 Simulated surface pressure coefficient distributions obtained with different levels of refinement for
the inviscid flow over a single NACA0012 airfoil

3.1 Shock-shear layer interaction

3.1.1 Two-dimensional case

This test is carried out to evaluate the ability of the AMR technique to capture the small-
scale vertical structures interacting with a shock discontinuity [32, 33]. A series of vortices
are generated by a spatially developing mixing layer, and interactions appear between
the downstream vortices and the shock which is reflected by a (slip) wall at the lower
boundary. The initial conditions are shown in [33], and the mixing layer is developed by
the following hyperbolic tangent profile:

u = 2.5 + 0.5 tanh (2y), (10)

v′ =
2∑

k=1
αk cos (2πkt/T + φk)exp(−y2/b), (11)

where period T = λ/uc, wave length λ = 30, b = 10, a1 = a2 = 0.05,φ1 = 0,φ2 = π/2,
and the convective velocity uc = 2.68. The rest of the boundary conditions can refer to
[32], which will not be repeated here. The Reynolds number is 500 for this case.
The computational domain is [ 0, 200]×[−20, 20], which is divided into 400 × 80 ini-

tial cells. For this unsteady problem, a solution-based refinement is carried out every time
step. The divergence and curl of velocity criterion are both used in this example because
it contains both shock and vortex structures. In Fig. 8, the adapted mesh at the final cal-
culation time T = 120 is shown, which is colored by the process number (i.e., different
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Fig. 15 Supersonic flow around two staggered NACA0012 airfoils. Left: the partition of adaptive grids on 48
cores. Right: pressure contour

colors represent different processes). It is illustrated from the figure that the key flow
characteristics in the flow field (whether it is a shock wave or vortex structures) can be
effectively captured by the criterion in our CABA solver. The result also shows the excel-
lent dynamic partitioning ability and load balancing performance of CABA for dynamic
adaptive grid. Moreover, the calculated density contours at the final calculation time are

Fig. 16 Simulated surface pressure coefficient distributions obtained with different levels of refinement for
the inviscid flow over two staggered NACA0012 airfoils
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presented in Fig. 9 and compared with the numerical results obtained by the coarse uni-
form mesh (i.e. 400 × 80 cells) and the fine uniform mesh (i.e. 800 × 160 cells). It can
be seen that the vortex structures downstream of the shock wave obtained by the coarse
uniform mesh have obvious dissipation compared to the results of adaptive grid and the
fine uniform grid. Therefore, the parallel CABA solver developed in this paper can obtain
similar results with the fine meshes by using fewer grid cells.

3.1.2 Three-dimensional case

Next, we consider the three-dimensional shock-mixing layer interaction problem as in
Ref. [33]. The computational domain is to stretch a two-dimensional surface along the z-
direction, with symmetrical boundary conditions applied at both ends. Considering the
three-dimensional effect, the inflow conditions (12) are modified as:

v′ =
2∑

k=1
αk cos (2πk(t/T + z/Lz) + φk)exp(−y2/b), (12)

where Lz = 40 is the length in the z-direction. The density contours with iso-surfaces at
t = 120 are shown in Fig. 10. Due to the three-dimensional disturbance, a phase difference
occurs and the spanwise vortex structure develops regularly along the z-direction. After
the first shock hits the layer, the vortex structure in the z-direction deforms significantly.
Then, the shock is reflected by the boundary and strikes the layer again, which makes the
interaction of vortex further developed.
To better represent the performance of the developed parallel adaptive Cartesian solver,

the density contours at location z = 20 plane are shown in Fig. 11. Analogy to the analysis
of two-dimensional case, the comparison with the results simulated from uniform grid
is also given in Fig. 11. It can be found that the adaptive meshes have similar accuracy
compared to the fine meshes, while the results on coarse meshes are the most dissipative.
It is worth mentioning that the number of grids with AMR technique is about 25.6% of
that using the fine grid at the final simulation time t = 120, while the calculation cost is
only 1/6 of that.

3.2 Flow around NACA0012 airfoil and two staggered NACA0012 airfoils

3.2.1 Inviscid transonic flow around NACA0012 airfoil

The transonic flow around a single NACA0012 airfoil is selected here to verify the ghost-
cell method of the CABA solver in this paper. First, a classical inviscid case with Mach
number Ma = 0.85 and angle of attack α = 1◦ is tested. The computation domain is
[ 0, 32c]×[ 0, 32c], where c is the chord length of airfoil. The initial mesh (64 × 64) is
first refined six times near the body boundary, and the number of grids is 15,070. Then
three levels of solution-based refinement are carried out by 48 cores in parallel during the
computation, with the final number of the adapted grid 23,119. Figure 12 shows the grid
partition in the steady-state, and it can be seen that the strong shocks are well captured on
both upper and lower surfaces. Figure 13 shows the pressure contours under three times
solution-based refinement and the results without solution-based refinement for compar-
ison. It can be clearly seen that the shock is smeared without solution-based refinement,
while the result after adaptive processes is sharper. Additionally, the grid independence
analysis is carried out, with the main aim to verify the obtained simulations under the
mesh conditions with different levels of h-refinement. The pressure coefficient Cp is
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Fig. 17 Mach number contours with streamlines and separation around the top airfoil

shown in Fig. 14. The figure gives a comparison of the results with different AMR times
and the results of the body-fitted grid with a mesh number of 20,480 in AGARD [34]. It
can be found that the present results compare reasonably with the results of AGARD and
AMR can capture the shock wave position more accurately and meanwhile reduce the
oscillation of Cp to a certain extent.

3.2.2 Inviscid supersonic flow around two staggered NACA0012 airfoils

Compared with the single block-structured grid, one of the main advantages of the Carte-
sian grid is that it can directly generate corresponding grids on multiple objects for
numerical simulation. Therefore, a supersonic flow around two staggered NACA0012
configuration withMach number 2 and the attack of angle 0 is considered. The two airfoils
are staggered by half a chord length in the pitchwise as well as chordwise direction. The
computation domain is [ 0, 32c]×[ 0, 32c], where c is the chord length of airfoil. The initial
mesh (64 × 64) is first refined seven times near the body boundary. Then three levels of
solution-based refinement are carried out by 48 cores in parallel during the computation,
and the final number of the adapted grid is 33,362.
For this test case, we mainly focus on the complex shock structures (such as the bow

shock, reflected shock, trailing edge shock, etc.) and their interactions. Figure 15 shows
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Fig. 18 Simulated results obtained with different levels of refinement for the viscous flow over two
staggered NACA0012 airfoils. Left: pressure coefficient. Right: skin-friction coefficient

the partitioning of the adaptive Cartesian grid and pressure contours in the steady state.
It can be clearly seen that the CABA solver accurately captures the leading edge shock,
the trailing edge shock, and the reflection of shock between the two airfoils of this prob-
lem. The pressure coefficient Cp is shown in Fig. 16. It can be seen that the results with
three levels of solution-based refinement match well with the results of the high-order
DGmethod on adaptive grid [14]. It is worth mentioning that AMR has played an obvious
role in capturing the reflected shock wave on the lower surface of the top airfoil.

3.2.3 Viscous transonic flow around two staggered NACA0012 airfoils

To further demonstrate the accuracy of CABA, flow over two staggered NACA0012 con-
figurations with Ma = 0.8,Re = 500, and angle of attack α = 10◦ is simulated. In this
case, prominent vortexes extend over 50% of the chord on the upper surface of the upper
airfoil and a large separated region appears. The length of initial grid in this case is set
to 0.25c, while the computation domain remains the same as the previous inviscid case.
The initial mesh is firstly refined six times near the airfoil surface, then three times of
solution-based refinement are carried out during the time evolution to correctly capture
flow evolution. Figure 17 presents the simulated streamlines and it can be clearly seen
that two vortices are generated in the separated region on the upper surface of the top
airfoil. Figure 18 shows the corresponding distributions of pressure coefficient Cp and
skin-friction coefficient Cf . The simulated pressure coefficient and skin-friction coeffi-
cient are also compared with the results from unstructured grids [35]. It shows good
agreement between presented results and reference data. It also can be clearly seen that
the oscillation of Cf is greatly reduced after solution-based refinement.

3.3 Von Karman vortex street

The classical problem of flow past a circular cylinder is considered, which has been exten-
sively studied both experimentally and numerically [36]. Considering its highly unsteady
characteristics, this example is also used to verify the performance of the CABA solver’s
automatic partitioning algorithm for adaptive Cartesian grids. In the present calculation,
the Reynolds number is set to 200 based on the inflow velocity and the cylinder diameter,
and the free-streamMach number is 0.3. The computation domain is [ 0, 20D]×[ 0, 10D],
where D is the cylinder diameter. The initial mesh (320 × 160) is first refined six times
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Fig. 19 The dynamic partition of adaptive grids at two different times on 48 cores

near the body boundary to better describe the profile of the cylinder. Then three levels
of solution-based refinement are carried out by 48 cores in parallel during the compu-
tation, and the final number of the adapted grid is around 261,338. Figure 19 shows the
dynamic partition of the adaptive Cartesian grid at different times. It can be clearly seen
that the CABA solver in this paper has reasonable dynamic partitioning capabilities for
the adaptive Cartesian grid. The vorticity contours without solution-based refinement
and with three times solution-based refinement are both given in Fig. 20. The evolutions
such as the generation, shedding, and periodic change of vortex street are well captured
in both cases. It can be seen that a longer distance of vortex evolution can be realized with
the combination of adaptive technology, while the vortex structures have significantly
greater dissipation at downstream without AMR. Table 1 compares the lift coefficient
CL, drag coefficient CD and Strouhal number with other numerical results obtained by
unstructured grids with AMR [36] and Cartesian grid [37]. It can be seen that CL and CD
compare well with references and the predicted Strouhal number is 2.3-4.7% larger than
the literature results.
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Fig. 20 Instantaneous vorticity contours for flow around a cylinder. Top: without solution-based refinement.
Bottom: with three times solution-based refinement

3.4 Flow around ONERAM6 wing

In this section, the transonic flow around an ONERA M6 wing is tested to validate the
overall performance of the developed CABA solver. For instance, the automatic gener-
ation of three-dimensional Cartesian grids, the robustness of the ghost-cell method for
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Table 1 Comparison of the present results against reference for flow over a cylinder

CL CD Strouhal number

Ref1 [36] 0.67 1.39 0.192

Ref2 [37] 0.74 1.32 0.196

CABA 0.69 1.43 0.201

three-dimensional cases, and the ability to capture flow field characteristics. The free-
stream Mach number is 0.8395 and the angle of attack α is 3.06◦, with other conditions
the same as Ref. [38]. The computational domain is defined as [ 0, 16]×[ 0, 16]×[ 0, 16],
and the initial grid step size is set to 1. First, the STL file (consisting of 16280 triangular
cells) of the M6 wing is input for the CABA solver. Then, the required Cartesian grid is
automatically generated for subsequent calculations. Based on the adaptive Cartesian grid
in Fig. 21, three levels of solution-based refinement are carried out during the computa-
tion, and the final number of the adapted grid is 7,166,614. Figure 22 depicts the adapted
mesh at different span locations, where the grids near the leading edge of the wing and
the shock wave region are significantly refined.
The pressure contours are shown in Fig. 23 and the “λ" shape shock wave on the upper

surface of the wing is clearly captured. Figure 24 shows the pressure coefficient distribu-
tions at selected spanwise locations computed by CABA. The experimental results [39]
and Euler results getting from high-order methods on unstructured grids reported in [38,
40] are also presented in Fig. 24 for comparison. The results of CABA have well agree-
ment with the computational data, while small deviations compared with experimental
data due to the lack of viscous effects.
At the same time, we also used this case to test the parallel performance of the in-house

CABA solver. To ensure enough calculations, the minimum size of the grid in this case
is reduced by 1/4, and the final number of grids increases to 44 million. The case was

Fig. 21 The initial computational grids with geometry-based AMR
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Fig. 22 Partial view of the adaptive grids with solution-based AMR (Z/b = 0, Z/b = 0.4, Z/b = 0.9)

Fig. 23 Pressure contours for flow around ONERA M6 wing (Z/b = 0, Z/b = 0.4, Z/b = 0.9)
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Fig. 24 Pressure coefficient distributions on the different spanwise sections of ONERA M6 wing

performed on a cluster, where the nodes have two Intel Gold 6149 CPUs at 3.1 GHz per
node. Figure 25 shows the parallel efficiency under different number of processes. It can
be seen that when the number of processes increases to 512, the parallel efficiency can still
be maintained above 80%, which indicates the feasible parallel scale expansion prospect
of our numerical solver.

3.5 Flow around a sphere

3.5.1 Viscous subsonic case

To test the performance of CABA in simulating the 3D compressible viscous flow, the
case of the steady viscous flow around a sphere is solved [41, 42]. It was tested on a cluster
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Fig. 25 Parallel efficiency and speed-up ratio for different number of processes

using one node (128 cores, two Intel Gold 6149 CPUs per node). The Reynolds number
based on the diameter of the sphere is 118. The free-streamMach number is set as 0.2535
following the same experimental condition [43]. The diameter of the sphere is D = 1, and
the computational domain is [ 0, 24]×[ 0, 24]×[ 0, 24]. The initial mesh (24 × 24 × 24) is
refined seven times near the body boundary to better describe the profile of the sphere
and three levels of solution-based refinement are carried out by 128 cores in parallel dur-
ing the computation. The number of the grid is 1,539,782 and increased to 1,801,220
after solution-based AMR. Figure 26 presents the computed Mach number contours and
streamlines. Since the Reynolds number of the flow is less than the critical Reynolds num-
ber, the flow is considered steady and a separation bubble appears. As noted in Fig. 26,
the wake pattern remains highly symmetric. To quantitatively validate the accuracy of the
computed results, the predicted separation angle θ , and the length of wake L are com-
pared with the results of body-fitted grids [42]. The details are shown in Table 2, where
the results agree well with the reference data and experimental data [42].

3.5.2 Viscous supersonic case

The supersonic flow around a sphere is further tested to assess the capacity of the current
method for capturing the shock wave for 3D flows. The Reynolds number based on the
diameter of the sphere and the free-streamMach number are set as 300 and 2 respectively

Table 2 Comparison of the present results against reference for subsonic flow around a sphere

θ L

Experiment 151.0 1.07

Ref [42] 125.1 1.32

CABA 130.8 0.97



Qi et al. Advances in Aerodynamics            (2022) 4:21 Page 25 of 30

Fig. 26 Streamlines and Mach number contours for subsonic flow around a sphere (Z = 0)

to achieve steady and axisymmetric flow field. The computational domain and initial
mesh are the same as the case in Sec. 3.5.1 and the final number of grid is 2,044,980. The
hardware conditions are the same as the previous example. Figure 27 depicts the stream-
lines and Mach number contours, from which stable and axisymmetric flow structures
can be clearly observed. The adaptive grid on two sections along with the Mach number
contours is shown in Fig. 28. Clearly, the mesh is adequately refined in the shock reflec-
tion region and the shock is captured sharply. To quantitatively assess the results, Table 3
compares the shock stand-off distance Ls, separation angle θ , and wake length L com-
puted by body-fitted grids [38, 44]. It can be found that the results are in good agreement.
The observations in both Sec. 3.5.1 and Sec. 3.5.2 validate the correctness and robustness
of CABA in solving the 3D compressible viscous flow.

Fig. 27 Streamlines and Mach number contours for supersonic flow around a sphere (Z = 0)
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Fig. 28 The adaptive grids and Mach contours on two sections

3.6 Laminar flow around a delta wing

In the last example, the laminar delta wing is considered to test the improvedmulti-valued
ghost-cell method in parallel framework. The leading and trailing edges of the delta wing
are both sloped and sharp, which means a large number of multi-value points will be
generated. And this makes delta wing one of the most difficult shapes to handle with
GCM. A delta wing model with 75 degrees of sweep is chosen, and it was used in the test
of SU2 [45]. The inflow Mach number equals to 0.3 at an angle of attack α = 12.5◦, and
Reynold number Re = 4000, which is similar to Ref. [41]. In this condition, separated
zones will be generated at a large angle of attack. Therefore, we select this example to
verify the ability of CABA to capture three dimensional dynamic separation vortices, as
well as the effectiveness of the improved multi-valued ghost-cell method in large-scale
parallelism. The case was tested on a cluster using three nodes (384 cores, two Intel Gold
6149 CPUs at 3.1 GHz per node).
The computational domain is defined as [ 0, 16]×[ 0, 16]×[ 0, 16], and the initial grid

step size is set to 1. The number of the grid is 36,954,569 and increased to over 60 million
after solution-based AMR. The comparisons of the grid with and without solution-based
AMR on different slices are shown in Fig. 29, from which it can be seen that the grids in

Table 3 Comparison of the present results against reference for supersonic flow around a sphere

θ L Ls

Ref [38] 150.0 0.36 0.20

Ref [44] 150.9 0.38 -

CABA 150.6 0.40 0.20
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Fig. 29 Comparison of the grid with and without AMR

the vortex region are fully refined. Figure 30 shows the streamlines and pressure contours
resulting from grids with and without AMR. Results obtained on grids without AMR are
shown over the left half of the wing while the results from grids with AMR are over the
right half. The streamlines illustrate that as the flow passes the leading edge it rolls up and
creates a vortex. By comparing the contours on the left and right sides, it can be clearly
seen that the vortex calculated on the adaptive grid can be better maintained. The parallel
simulation of a three-dimensional thin object such as a delta wing can validate themethod
in this article, and is of great significance to the automation and robustness of Cartesian
grids method.

Fig. 30 Streamline and pressure contours on grids with AMR over the right half of the wing and grids
without AMR over the left half
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4 Conclusion
The methodology for automatic and efficient simulation of compressible flow on paral-
lel adaptive Cartesian grid is developed in this work. To be specific, with the improved
axis aligned bounding box theorem, the grid generator can generate tens of millions
of grids for complex three-dimensional bodies in ten minutes automatically and paral-
lelly. Besides, an information transmission approach for the wall boundary is proposed
to guarantee the parallelized implementation of the ghost-cell method. Especially, a
multi-valued ghost-cell method for handling thin objects is developed to adapt to the
parallel framework. Through the combination of these mentioned essential approaches
and the open-source library p4est (a Cartesian-based AMR parallel library), a parallel
compressible flow solver named CABA is developed.
Then, the overall performance of this numerical method is validated by several invis-

cid/viscous flow cases, including flow over multiple objects, separated flow, steady and
unsteady flow with shock and vortex, as well as the flow around a thin delta wing. The
obtained results indicate the capability and parallel scalability of the present methodology
are very agreeable as compared with related reference data. As future work, the simulation
of high Reynolds number compressible flow is on the agenda.
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