Skip to main content

Table 1 Typical boundary conditions used in the airfoil simulations. The CV was the same for all cases

From: Some effects of domain size and boundary conditions on the accuracy of airfoil simulations

Boundaries

\(\varvec{U}\ \mathbf{[ms}^{\varvec{-1}}\varvec{]}\)

\(\varvec{p}\ \mathbf{[m}^{\varvec{2}}\mathbf{s}^{\varvec{-2}}\varvec{]}\)

\(\varvec{\nu }_{\varvec{t}}\ \mathbf{[m}^{\varvec{2}} \mathbf{s}^{\varvec{-1}}\varvec{]}\)

\(\tilde{\varvec{\nu }}\ \mathbf{[m}^{\varvec{2}} \mathbf{s}^{\varvec{-1}}\varvec{]}\)

 

BC-1

I, T, B

fixedValue, (51.48, 0, 0)

zeroGradient

fixedValue, 8.58 × 10−6

fixedValue, 3.432 × 10−5

O

zeroGradient

fixedValue, 0

zeroGradient

zeroGradient

Airfoil

fixedValue, (0, 0, 0)

zeroGradient

fixedValue, 0

fixedValue, 0

 

BC-2

I, T, B, O

freestreamVelocity, (51.48, 0, 0)

freestreamPressure, 0

freestream, 8.58 × 10−6

freestream, 3.432 × 10−5

 

BC-3

I

fixedValue, (51.48, 0, 0)

zeroGradient

fixedValue, 8.58 × 10−6

fixedValue, 3.432 × 10−5

T, B

slip

slip

slip

slip

O

zeroGradient

fixedValue, 0

zeroGradient

zeroGradient

 

BC-4

I

fixedValue, (51.48, 0, 0)

zeroGradient

fixedValue, 8.58 × 10−6

fixedValue, 3.432 × 10−5

T, B

symmetry

symmetry

symmetry

symmetry

O

zeroGradient

fixedValue, 0

zeroGradient

zeroGradient