Skip to main content

Table 3 Physical properties of the coolant used in the numerical simulations

From: A modified local thermal non-equilibrium model of transient phase-change transpiration cooling for hypersonic thermal protection

Property

Water Liquid

Water Vapor

Unit

Density

960

Ideal gas \(p = \frac{\rho }{{{M_{{{\text{H}}_{2}}{\text{O}}}}}}RT\)

\(\rho = \frac{p \times 0.018}{{8.314 \times T}}\)

kg/m3

Specific heat capacity

4217

2029

J/(kg·K)

Dynamic viscosity

\(2.41 \times {10^{\frac{247.8}{{T - 140}}}} \times {10^{ - 5}}\)

\((-2.78+0.04T)\times {10^{ - 6}}\)

kg/(m·s)

Heat transfer coefficient

0.68

\((-21.99+0.12T)\times {10^{ - 3}}\)

W/(m·K)

Prandtl number

\(0.149 \times {10^{\frac{247.8}{{T - 140}}}}\)

0.984

/

Surface tension coefficient

0.0589

N/m

Latent heat

\(\begin{gathered} 2.29 \times {10^7} - 2.82 \times {10^5}{T_{sat}} + 1.61 \times {10^3}{T_{sat}}^2 - 4.82 \times {T_{sat}}^3 \hfill \\ + 7.92 \times {10^{ - 3}}{T_{sat}}^4 - 6.77 \times {10^{ - 6}}{T_{sat}}^5 + 2.33 \times {10^{ - 9}}{T_{sat}}^6 \hfill \\ \end{gathered}\)

J/kg

Saturation temperature

\(222.13 + 16.15\times p_{sat}^{0.193}\)

K

Specific enthalpy of saturated water liquid

\(- 1.22 \times {10^6} + 4.41 \times {10^3}{T_{sat}}\)

J/kg

Specific enthalpy of saturated water vapor

\(\begin{gathered} 1.42 \times {10^6} + 8.70 \times {10^3}{T_{sat}} - 33.29{T_{sat}}^2 + 0.078 \times {T_{sat}}^3 \hfill \\ - 7.97 \times {10^{ - 5}}{T_{sat}}^4 + 1.86 \times {10^{ - 8}}{T_{sat}}^5 \hfill \\ \end{gathered}\)

J/kg