Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Wea Rev 91(3):99–164.
Article
Google Scholar
Gourdain N, Sicot F, Duchaine F, Gicquel L (2014) Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035. Philos Trans R Soc A Math Phys Eng Sci 372(2022):20130323.
Article
Google Scholar
Tyacke JC, Tucker PG (2015) Future Use of Large Eddy Simulation in Aero-engines. J Turbomach 137(8). https://doi.org/10.1115/1.4029363.
Wang ZJ, Li Y, Jia F, Laskowski GM, Kopriva J, Paliath U, Bhaskaran R (2017) Towards industrial large eddy simulation using the FR/CPR method. Comput Fluids 156:579–589.
Article
MathSciNet
MATH
Google Scholar
Bhaskaran R, Jia F, Laskowski GM, Wang ZJ, Paliath U (2017) Towards High-Order Large Eddy Simulation of Aero-Thermal Flows for Turbomachinery Applications In: ASME Turbo Expo 2017, 02–41011, Charlotte. https://doi.org/10.1115/gt2017-63358.
Sandberg RD, Michelassi V (2019) The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact. Flow Turbul Combust 102(4):797–848.
Article
Google Scholar
Li X-L, Fu D-X, Ma Y-W, Liang X (2010) Direct numerical simulation of compressible turbulent flows. Acta Mech Sin 26(6):795–806.
Article
MATH
Google Scholar
Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis DCFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. Technical Report NASA/CR-2014-218178. NASA Langley Research Center.
Tucker PG (2013) Trends in turbomachinery turbulence treatments. Progress Aerosp Sci 63:1–32.
Article
Google Scholar
Tyacke J, Vadlamani NR, Trojak W, Watson R, Ma Y, Tucker PG (2019) Turbomachinery simulation challenges and the future. Progress Aerosp Sci:100554. https://doi.org/10.1016/j.paerosci.2019.100554.
Article
Google Scholar
Laskowski GM, Kopriva J, Michelassi V, Shankaran S, Paliath U, Bhaskaran R, Wang Q, Talnikar C, Wang ZJ, Jia F (2016) Future Directions of High Fidelity CFD for Aerothermal Turbomachinery Analysis and Design In: 46th AIAA Fluid Dynamics Conference. AIAA AVIATION Forum.. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2016-3322.
Hillewaert K, Carton de Wiart C, Verheylewegen G, Arts T (2014) Assessment of a High-Order Discontinuous Galerkin Method for the Direct Numerical Simulation of Transition at Low-Reynolds Number in the T106c High-Lift Low Pressure Turbine Cascade In: ASME Turbo Expo 2014, 2014–26739, Dusseldorf. https://doi.org/10.1115/gt2014-26739.
Marty J (2014) Numerical investigations of separation-induced transition on high-lift low-pressure turbine using RANS and LES methods. Proc Inst Mech Eng Part J Power Energy 228(8):924–952.
Article
Google Scholar
Sandberg RD, Michelassi V, Pichler R, Chen L, Johnstone R (2015) Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology. J Turbomach 137(5):051011–05101110.
Article
Google Scholar
Wheeler APS, Sandberg RD, Sandham ND, Pichler R, Michelassi V, Laskowski G (2016) Direct Numerical Simulations of a High-Pressure Turbine Vane. J Turbomach 138(7):071003–0710039.
Article
Google Scholar
Garai A, Diosady LT, Murman SM, Madavan NK (2016) DNS of Low-Pressure Turbine Cascade Flows With Elevated Inflow Turbulence Using a Discontinuous-Galerkin Spectral-Element Method In: ASME Turbo Expo 2016, 2016–56700.. American Society of Mechanical Engineers. https://doi.org/10.1115/gt2016-56700.
Pichler R, Sandberg RD, Michelassi V (2016) Assessment of Grid Resolution Requirements for Accurate Simulation of Disparate Scales of Turbulent Flow in Low-Pressure Turbines In: ASME Turbo Expo 2016, 02–39030, Seoul. https://doi.org/10.1115/gt2016-56858.
Cassinelli A, Montomoli F, Adami P, Sherwin SJ (2018) High Fidelity Spectral/hp Element Methods for Turbomachinery In: ASME Turbo Expo 2018, 02–42020, Oslo. https://doi.org/10.1115/gt2018-75733.
Michelassi V, Chen L-W, Pichler R, Sandberg RD (2015) Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances. J Turbomach 137(7):071005–07100512.
Article
Google Scholar
Rai M (2011) A Direct Numerical Simulation of Flow Through a Low Pressure Turbine Stage In: 41st AIAA Fluid Dynamics Conference And Exhibit. Fluid Dynamics and Co-located Conferences.. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/mfd11.
Hu S, Zhou C, Xia Z, Chen S (2017) Large Eddy Simulation and CDNS Investigation of T106c Low-Pressure Turbine. J Fluids Eng 140(1):011108–01110812.
Article
Google Scholar
Wang ZJ (2007) High-order methods for the Euler and Navier–Stokes equations on unstructured grids. Prog Aerosp Sci 43(1):1–41.
Article
Google Scholar
Wang ZJ, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh Ht, Kroll N, May G, Persson P-O, van Leer B, Visbal M (2013) High-order CFD methods: current status and perspective. Int J Numer Meth Fluids 72(8):811–845.
Article
MathSciNet
Google Scholar
Huynh HT (2007) A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods In: 18th AIAA Computational Fluid Dynamics Conference.. American Institute of Aeronautics and Astronautics, AIAA 2007-4079. https://doi.org/10.2514/6.2007-4079.
Wang ZJ, Gao H (2009) A Unifying Lifting Collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J Comput Phys 228(21):8161–8186.
Article
MathSciNet
MATH
Google Scholar
Wang ZJ, Gao H, Haga TA unifying discontinuous formulation for hybrid meshes In: Adaptive High-order Methods in Computational Fluid Dynamics, 423–453.. World Scientific. https://doi.org/10.1142/9789814313193_0015.
Google Scholar
Liu Y, Vinokur M, Wang ZJ (2006) Spectral difference method for unstructured grids I: Basic formulation. J Comput Phys 216(2):780–801.
Article
MathSciNet
MATH
Google Scholar
Wang ZJ (2002) Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids, Basic Formulation: Basic Formulation. J Comput Phys 178(1):210–251.
Article
MathSciNet
MATH
Google Scholar
Reed WH, Hill TRTriangular Mesh Methods for the Neutron Transport Equation. Technical Report LA-UR–73-479; CONF-730414–2, Los Alamos Scientific Lab., N.Mex. (USA).
Discontinuous Galerkin Methods - Theory, Computation and Applications(Cockburn B, Karniadakis GE, Shu C-W, eds.). Springer. https://doi.org/10.1007/978-3-642-59721-3.
MATH
Google Scholar
Hesthaven JS, Warburton TNodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. 1st edn.. Springer. https://doi.org/10.1007/978-0-387-72067-8.
Book
MATH
Google Scholar
Zhang L, Wei L, Lixin H, Xiaogang D, Hanxin Z (2012) A class of hybrid DG/FV methods for conservation laws I: Basic formulation and one-dimensional systems. J Comput Phys 231(4):1081–1103.
Article
MathSciNet
MATH
Google Scholar
Visbal MR, Rizzetta DP (2002) Large-Eddy Simulation on Curvilinear Grids Using Compact Differencing and Filtering Schemes. J Fluids Eng 124(4):836.
Article
Google Scholar
Kawai S, Shankar SK, Lele SK (2010) Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J Comput Phys 229(5):1739–1762.
Article
MathSciNet
MATH
Google Scholar
Bogey C, Bailly C (2006) Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model. Int J Heat Fluid Flow 27(4):603–610.
Article
Google Scholar
Garmann DJ, Visbal MR, Orkwis PD (2013) Comparative study of implicit and subgrid-scale model large-eddy simulation techniques for low-Reynolds number airfoil applications. Int J Numer Methods Fluids 71(12):1546–1565.
Article
MathSciNet
Google Scholar
Uranga A, Persson P-O, Drela M, Peraire J (2011) Implicit Large Eddy Simulation of transition to turbulence at low Reynolds numbers using a Discontinuous Galerkin method. Int J Numer Meth Engng 87(1-5):232–261.
Article
MathSciNet
MATH
Google Scholar
Vermeire BC, Nadarajah S, Tucker PG (2016) Implicit large eddy simulation using the high-order correction procedure via reconstruction scheme. Int J Numer Meth Fluids 82(5):231–260.
Article
MathSciNet
Google Scholar
Zhu H, Fu S, Shi L, Wang ZJ (2016) Implicit Large-Eddy Simulation for the High-Order Flux Reconstruction Method. AIAA J 54(9):2721–2733.
Article
Google Scholar
Alhawwary M, Wang ZJ (2018) Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws. J Comput Phys 373:835–862.
Article
MathSciNet
MATH
Google Scholar
Alhawwary MA, Wang ZJ (2018) Comparative Fourier Analysis of DG, FD and Compact Difference schemes In: 2018 Fluid Dynamics Conference, AIAA Aviation Forum.. American Institute of Aeronautics and Astronautics, AIAA-2018-4267, Atlanta.
Google Scholar
4th International Workshop on High-Order CFD Methods. https://how4.cenaero.be/. Accessed 1 Oct 2019.
Michálek J, Monaldi M, Arts T (2012) Aerodynamic Performance of a Very High Lift Low Pressure Turbine Airfoil (T106c) at Low Reynolds and High Mach Number With Effect of Free Stream Turbulence Intensity. J Turbomach 134(6):061009–06100910.
Article
Google Scholar
Huynh HT (2009) A Reconstruction Approach to High-Order Schemnes Including Discontinuous Galerkin for Diffusion In: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009–403.. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2009-403.
Vincent PE, Castonguay P, Jameson A (2011) A New Class of High-Order Energy Stable Flux Reconstruction Schemes. J Sci Comput 47(1):50–72.
Article
MathSciNet
MATH
Google Scholar
Gao H, Wang ZJ, Huynh HT (2013) Differential Formulation of Discontinuous Galerkin and Related Methods for the Navier-Stokes Equations. Commun Comput Phys 13(04):1013–1044.
Article
MathSciNet
MATH
Google Scholar
Huynh HT, Wang ZJ, Vincent PE (2014) High-order methods for computational fluid dynamics: A brief review of compact differential formulations on unstructured grids. Comput Fluids 98:209–220.
Article
MathSciNet
MATH
Google Scholar
Yu M, Wang ZJ, Liu Y (2014) On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods. J Comput Phys 259:70–95.
Article
MathSciNet
MATH
Google Scholar
Wang ZJ (2016) A perspective on high-order methods in computational fluid dynamics. Sci China Phys Mech Astron 59(1):614701.
Article
Google Scholar
Wang ZJ, Huynh HT (2016) A review of flux reconstruction or correction procedure via reconstruction method for the Navier-Stokes equations. Mech Eng Rev 3(1):15–004751500475.
Article
Google Scholar
Bassi F, Rebay S, Mariotti G, Pedinotti S, Savini M (1997) A Higher-order accurate discontinuous Finite Element Method for inviscid and viscous turbomachinery flows. In: Decuypere R Dibelius G (eds)Proceedings of 2nd European Conference on Turbomachinery-Fluid Dynamics and Thermodynamics, 99–108.. Antwerp: Technologische Instituut, Antwerpen.
Google Scholar
Chen RF, Wang ZJ (2000) Fast, Block Lower-Upper Symmetric Gauss-Seidel Scheme for Arbitrary Grids. AIAA J 38(12):2238–2245.
Article
Google Scholar
Yoon S, Jameson A (1988) Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA J 26(9):1025–1026.
Article
Google Scholar
Pacciani R, Marconcini M, Fadai-Ghotbi A, Lardeau S, Leschziner MA (2009) Calculations of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model In: ASME Turbo Expo 2009, 433–442. https://doi.org/10.1115/gt2009-59557.
Benyahia A, Castillon L, Houdeville R (2011) Prediction of Separation-Induced Transition on High Lift Low Pressure Turbine Blade In: ASME Turbo Expo 2011, 1835–1846. https://doi.org/10.1115/gt2011-45566.
Pacciani R, Marconcini M, Arnone A, Bertini F (2013) Predicting High-Lift Low-Pressure Turbine Cascades Flow Using Transition-Sensitive Turbulence Closures. J Turbomach 136(5):051007–05100711.
Article
Google Scholar
Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics 15(2):70–73.
Article
Google Scholar
Alhawwary MA A C++ toolbox for computing Discrete and Fast Fourier Transforms (DFT,FFT), Power Spectral Density (PSD) estimates, and the sound pressure level (SPL) in (dB). https://github.com/mhawwary/FFTpsd. Accessed 1 Oct 2019.
Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13(1):82–85.
Article
MathSciNet
MATH
Google Scholar
George WK, Beuther PD, Arndt REA (1984) Pressure spectra in turbulent free shear flows. J Fluid Mech 148:155–191.
Article
MATH
Google Scholar
Jones BG, Adrian RJ, Nithianandan CK, Jr HPP (1979) Spectra of Turbulent Static Pressure Fluctuations in Jet Mixing Layers. AIAA J. https://doi.org/10.2514/6.1977-1370.
Nelkin M (1994) Universality and scaling in fully developed turbulence. Adv Phys 43(2):143–181.
Article
Google Scholar